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1 Introduction

1.1 STRUCTURE IN MULTIVARIATE DATA

Commonly, almost all natural scientists make a great number of mea-
surements in their daily activities, for example, on the orientation of
strata, geochemical determinations, mineral compositions, rock analy-
ses, measurements on fossil specimens, properties of sediments, ecolog-
ical factors, genetics, and many other kinds. You need only reflect on
the routine work of a geological survey department in order that the
truth of this statement may become apparent.

Scientific data are often multivariate. For example, in a rock analysis,
determinations of several chemical elements are made on each rock
specimen of a collection. You will all be familiar with the tables of
chemical analyses that issue from studies in igneous petrology and
analytical chemistry. Petrologists have devised many kinds of diagrams
in their endeavor to identify significant groupings in these data lists.
The triangular diagrams of petrology permit the relationships between
three variables at a time to be displayed. Attempts at illustrating more
highly multivariate relationships have led to the use of ratios of ele-
ments and plots on polygonal diagrams (cf. Aitchison, 1986).

Obviously, one can only go so far with the graphical analysis of a data
table. The logical next step is to use some type of quantitative method
for summarizing and analyzing the information hidden in a multivariate
table. It is natural to enquire how the variables measured for a
homogeneous sample are connected to each other and whether they
occur in different combinations, deriving from various relationships in
the population. One may, on the other hand, be interested in seeing
how the specimens or objects of the sample itself are interrelated, with
the thought in mind of looking for natural groupings. In both cases, we
should be seeking structure in the data.

Geologists and biologists came into touch with the concept of factor
analysis and the study of multivariate data structure through the con-
tacts between paleontologists and biologists. The biologists, in their
turn, learnt the techniques from psychometricians. Thus, the French
zoologist Teissier studied multivariate relationships in the carapace of a
species of crabs (Teissier, 1938), using a centroid first-factor solution of
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a correlation matrix. He interpreted this “general factor” as one indi-
cating differential growth.

Let us now look briefly at a few typical problems that may be given
meaningful solutions by an appropriately chosen variety of eigenanaly-
sis.

A geochemist has analyzed several trace elements in samples of
sediment from a certain area and wishes to study the relationships
between these elements in the hope of being able to draw conclusions
on the origin of the sediment.

A mining geologist is interested in prospecting an area for ores and
wants to use accumulated information on the chemistry and structural
geology of known deposits in the region to help predict the possibilities
of finding new ore bodies.

A paleontologist wishes to analyze growth and shape variation in the
shell of a species of brachiopods on which he has measured a large
number of characters.

A petroleum company wants to reduce the voluminous accumulations
of data deriving from paleoecological and sedimentological studies of
subsurface samples to a form that can be used for exploring for
oil-bearing environments.

In an oceanological study, it is desired to produce graphs that will
show the relationships between bottom samples and measurements
made upon them on a single diagram, as a means of relating organisms
to their preferences for a particular kind of sediment.

1.2 AN EXAMPLE OF PRINCIPAL COMPONENT FACTOR
ANALYSIS

At this point, we think it would be helpful to you if we gave you an
inkling of what is obtained in a principal component factor analysis.
(The reason for making this distinction will become clear later on.) We
have chosen an artificial mining example by Klovan (1968) because it
not only introduces the geological element at an early stage but also
provides a good practically oriented introduction to the subject.

Imagine the following situation. We wish to carry out exploration for
lead and zinc in an area containing a high-grade lead-zinc ore. The
area has been well explored geologically and the bedrock is made up of
an altered carbonate-shale sequence. The map area and the sampling
grid are displayed in Fig. 1.1.

The three controls, paleotemperature (7°), strength of deformation of
the bedrock (D), and the permeability of the rock (P) are considered to
determine the occurrence of lead and zinc, for the purposes of our
example. It is assumed that these controls are determinable from
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Figure 1.1. The sampling grid for the prospecting example.

observations on 10 chemical, mineralogical, and rock-deformational
variables. The distribution of these causes will in reality never be known
but, for this example, we shall imagine that they are distributed as
shown in Fig. 1.2. You will note that the lode lies at the intersection of
these causes at certain specified levels. These are, for paleotempera-
ture, 80-90, for deformation, 3545, and for permeability of the country
rock, 45-50. Accepting that a geological survey of the area would have
given as clear an indication as our manufactured example, it would not
be unreasonable to expect that target areas for intensive prospecting
would occur in localities where the intersection situation is repeated.

The three controls cannot, of course, be estimated directly. They can,
however, be measured indirectly from geological properties that are a
reflection of them. The arrays shown in Table 1.1 list the artificial data,
as well as the information used in constructing this set of observations.
The left array of numbers gives the “amount” of each of the three
controls at each of the localities; the upper array states precisely the
degree to which each of the geological variables is related to the causes.
Multiplication and summation of every row of the left array by every
column of the top array yields the large array (corresponding to raw
data) at the bottom. Naturally, in a real study, you would not know the
left-hand and top arrays of Table 1.I. All you would have at your
disposal would be the large array, or data matrix, the result of a
detailed geological survey and a laboratory study of the samples col-
lected.
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DISTRIBUTION OF PALEOTEMPERATURES
————— DISTRIBUTION OF PERMEABILITY
----- DISTRIBUTION OF DEFORMATION

Figure 1.2. Distribution of controls imposed at the locations of the
samples.

The question to be answered now is, how can we determine the
existence of structure in such a large array of numbers? The technique
of factor analysis turns out to be a useful way of providing plausible
answers.

Simply put, factor analysis creates a minimum number of new vari-
ables, which are linear combinations of the original ones such that the
new variables contain most or all of the information.

The starting point is provided by the correlations between the vari-
ables measured, 10 in all. The matrix of correlation coefficients is listed
in Table 1.I1. It was subjected to principal component factor analysis
for which three significant factors were obtained. Thus, we began with
10 characters but can now ‘“explain” the total variability of the sample
in terms of 3 new variables or factors.

The principal-factor matrix is listed in Table 1.I1I; it shows the
“composition” of the factors in relation to the original variables. As
these factors are usually not readily interpretable, it is accustomed
practice to rotate the reference axes by some appropriate method in
order to bring out the important contributing loadings and to diminish
the loadings on nonsignificantly contributing variables. The visual result
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Table 1.111. Results of the factor analysis

Factors
Variable Communality 1 2 3
Principal factors of the correlation matrix
1 1.0000 0.7933 —0.6029 0.0850
2 1.0000 0.8302 —0.5501 0.0902
3 1.0000 0.8505 —-0.5247 0.0373
4 1.0000 0.9742 -0.2073 0.0892
5 1.0000 0.0376 0.9992 —-0.0111
6 1.0000 0.6609 0.5989 —0.4522
7 1.0000 0.9310 0.2365 —0.2781
8 1.0000 0.7693 0.5001 —0.3976
9 1.0000 0.3389 0.5369 0.7726
10 1.0000 0.6765 0.5364 0.5046
Variance 54.614 31.928 13.459
Cumulative 54.614 86.542 100.000
variance
Varimax factor matrix
1 1.0000 0.9974 0.0716 0.0056
2 1.0000 0.9916 0.1201 0.0479
3 1.0000 0.9839 0.1771 0.0245
4 1.0000 0.8776 0.3992 0.2656
5 1.0000 —-0.6206 0.5952 0.5105
6 1.0000 0.0533 0.9882 0.1435
7 1.0000 0.5125 0.8391 0.1823
8 1.0000 0.2055 0.9637 0.1705
9 1.0000 0.0014 0.0534 0.9986
10 1.0000 0.2227 0.4059 0.8864
Variance 44.66 33.41 22.00

of the rotation will then be that some of the loadings will have been
augmented while others will have become greatly lower. In our exam-
ple, we used the varimax rotation technique. The varimax factor matrix
displayed in Table 1.1II demonstrates what we have just described, and
you will see this if you compare entries in the two upper listings of the
table, entry by entry. The rotated factor matrix contains 10 rows and 3
columns, each latter representing a factor. Reading down a column, the
individual numbers tell us the contribution of a particular variable to
the composition of the factor; in fact, each column can be thought of as
a factor equation in which each loading is the coefficient of the
corresponding original variable.
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Table 1.1I1I (cont.)

Factors
Locality 1 2 3
Varimax factor score matrix
1 1.6820 —1.1085 —0.8445
2 0.5988 0.2442 —1.3125
3 —0.2144 1.8308 0.0837
4 —0.7787 1.5001 0.0481
5 —1.5367 0.8901 —0.8567
6 —1.5277 —1.0713 0.5476
7 —1.0955 —0.0325 0.3471
8 —-0.5739 0.9167 0.8009
9 0.3768 0.2012 0.1881
10 1.1764 —0.9354 1.6917
11 1.2853 -0.3045 1.4412
12 0.4317 0.1081 1.5106
13 —0.1745 0.2776 0.7082
14 —0.6279 —0.5465 0.1032
15 —1.3205 —1.7494 0.6197
16 —0.3619 —1.6486 —1.5528
17 —0.0900 —0.5506 —1.5758
18 0.4709 0.4016 —1.1222
19 0.7671 1.2609 —0.1759
20 1.5394 0.3161 —0.6498

A third chart of numbers emerges from the factor analysis, the
varimax factor score matrix, shown in Table 1.III. This gives the
amounts of the new variables at each of the sample localities. With this
matrix, we are able to map the distributions of these new factor
variables on the sample grid.

It requires sound geological reasoning in order to interpret the
results of a factor analysis. From Table 1.1II, you will see that the first
factor is mainly concerned with the variables “Mg in calcite,” “Fe in
sphalerite,” and “Na in muscovite,” a combination indicating tempera-
ture dependence. The second factor is heavily loaded with the variables
“spacing of cleavage,” ‘“elongation of ooliths,” and “tightness of folds,”
a combination speaking for rock deformation. The third factor is
dominated by the variables “vein material/m?” and “fractures/m?”
interpretable as being a measure of permeability of the country rock.

The distribution of the three sets of factor scores is shown in Fig. 1.3.
The patterns of Fig. 1.2 are almost exactly duplicated. By comparing the
nature of the intersections around the known ore body, and searching
the diagram for a similar pattern, you will see that at least one other
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FACTOR 1 SCORES
---- FACTOR 2 SCORES
—*— = FACTOR 3 SCORES

Figure 1.3. Map of the composite factor scores for the three factors
of the ore-prospecting example.

area on the map has the same special conditions. The marked square is
thus the first-order target for further exploration. This is an artificial
example, contrived to give a good result. Under actual exploration
conditions, you would not expect things to fall out so nicely and your
geological knowledge would be put to a greater test. This is only a brief
summary of the example. If you want to work through all the steps, we
refer you to Klovan (1968).

You will find a good deal of simple algebra in the ensuing pages,
much of which you might think unnecessary, bearing in mind the
ubiquitousness of computer programs for doing most of the things
occurring in factor analysis. Obviously, nobody today is going to suggest
seriously that you try inverting matrices, or extracting eigenvalues and
eigenvectors, on your own, although we have devoted some space to the
arithmetic of this topic. There are numerous excellent programs for
doing these calculations at any computer installation and a wide selec-
tion of PC software. It is our considered opinion, nevertheless, that you
should have some idea of what is done by the computer in performing
these operations. Moreover, despite the fact that many varieties of
factor analysis are available at most installations, not all of them are to
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be recommended for general use. We have therefore made a point of
introducing you to the most useful and mathematically best defined
procedures so that you will be able to make a satisfactory choice among
the programs for factor analysis available to you.

Several recent updatings of principal component analysis have ap-
peared. It is relevant to our revision to see what topics have been taken
up in those texts.

Jolliffe (1986) covered some of the fields mapped out in the First
Edition. He included the highly appropriate data-analytical topics of
robust estimation procedures, determination of the “correct” number
of principal components, influential observations, and the isolation of
atypicalities in the data. He correctly noted that although true factor
analysis and principal component analysis may, in some respects, have
similar aims, they are different techniques. This was clearly enunciated
in the First Edition, but we opted for a nonspecific data-analytical use
of the concept of “factor analysis,” which permits greater latitude in
discussing methods that reduce to an eigensolution.

One of the bones of contention in principal component analysis is the
question of rotating eigenvectors in the manner usually thought proper
to true factor analysis. Jolliffe (1986, p. 118) observed that there may be
circumstances in which rotation of a subset of principal components can
prove advantageous — the main positive effect of this maneuver is that
it tends to simplify the factor loadings, or rotated principal component
coefficients, without the implication that a factor model is being as-
sumed. The most recent treatment of this subject is Chapter 8 in
Jackson (1991).

The volume by Flury (1988) provides an uncontroversial introduction
to principal component analysis. Such debatable questions as the rota-
tion of eigenvectors are not discussed at all. The main theme of that
text concerns common principal component analysis, a variant of stan-
dard principal components, in which attention is paid to differences in
covariance matrices due to “pooling” (hence the adjective “common”)
and the distributional theory of eigenvalues and eigenvectors. Canoni-
cal correlation is included as a peripheral technique.

The book by Preisendorfer (1988), completed posthumously by C. D.
Mobley, gives an interesting insight into applications in meteorology
and oceanography. Canonical correlation is also included among the
techniques considered. Rather surprisingly, Preisendorfer’s way of
treating some problems discloses ignorance of well-established methods
of multivariate statistical analysis as well as a lack of familiarity with
standard terminology. This deficiency occurs despite the fact that the
appropriate references appear in his bibliography. An example is the
problem of testing that an eigenvector agrees with a given vector.
Factor analysis is also included but without exemplifying the role of
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true factor analysis (perhaps weather forecasting could vield a suitable
example). Rotation of eigenvectors is accepted as a matter of course by
Preisendorfer as is also Procrustean superposition of “vector frames.”

The volume compiled by Fornell (1982) contains several valuable
pointers to future areas of development. One of the illuminating topics
is that concerning the revival of interest in the method of path analysis
of Sewall Wright. Other subjects covered are canonical correlation and
the analysis of redundancy. This topic is also taken up by Joreskog and
S6rbom (1989).

Another informative volume is that of Digby and Kempton (1987).
This is an ecologically oriented treatment in the hands of statisticians.
It encompasses many of the methods that we gather beneath the
umbrella of factor analysis and that were included in the First Edition:
these include methods of ordination, principal coordinates, correspon-
dence analysis, and the analysis of asymmetry. A very recent reference
is the text on principal component analysis by Jackson (1991). As a
matter of interest, the rotation of axes to simple structure is not
disputed as being a useful technique.

The slim volume by Gordon (1981) is a compact reference, replete
with essential information for the methods of principal components,
principal coordinates, correspondence analysis, and Gabriel’s biplot.
Useful sources of information on factor analysis in the geosciences are
to be found in the journals Mathematical Geology and Computers &
Geosciences. Articles of biological significance appear regularly in Bio-
metrics, Biometrika, and Evolution. The applied scientist can find much
of interest in the pages of Applied Statistics, in which problems of
biological relevance appear frequently.

1.3 OVERVIEW OF PROBLEMS AMENABLE TO
TREATMENT BY FACTOR-ANALYTICAL TECHNIQUES

The present section reviews briefly a randomly chosen set of articles in
which factor analysis of some variety has been used in order to solve a
scientific problem. We do this in the hope that this will give you a better
insight into the types of problems amenable to treatment by the factor
class of techniques.

Relationships between organisms and sedimentary facies

In a study of the Pleistocene—Holocene environment of the northwest-
ern part of the Persian Gulf, Melguen (1971) used correspondence
analysis to explore relationships between ecological and sedimentologi-
cal facies in the estuaries of the Rud Hilla and Rud Mund. The study
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material was derived from sediment cores taken from depths ranging
between 8 and 60 m. Thirty-three components were determined on
samples from the cores, including counts on the abundances of shell-
bearing organisms, serpulid tubes, fish remains, plants, fecal pellets,
argillaceous lumps, minerals, and rock fragments.

Petrology

Saxena (1970) studied a multicomponent, multiphase system of minerals
by using the principal components of the correlation matrix and plotting
the transformed observations. On such representations, he demon-
strated that by plotting certain relative positions of all coexisting miner-
als as well as the components of the multiphase system, lines joining
points representing pairs of coexisting minerals are significant in the
same sense as in concentration diagrams (Gibb’s triangle, for instance).
There is a clear advantage offered by the components approach in that
the lines stand for the influence of all the components of the system.

Sedimentary petrology

Osborne (1967, 1969) has employed factor analysis for grouping
Ordovician limestones, on the basis of characters determinable in thin
sections. He succeeded (Osborne, 1967) in attaching paleoecological
significance to the factors extracted. Within much the same frame of
reference, McCammon (1968) made a comparative study of factor-ana-
lytical methods of grouping facies of Recent carbonates of the Bahama
Bank. A similar study for Jurassic limestones of the northern Alps has
been done by Fenninger (1970).

Mineralogy

Middleton (1964) used factor analysis to elucidate a complicated miner-
alogical problem in scapolites. By applying principal components and
factor analysis to major- and trace-element data, he could identify the
marialite-meionite solid solution in scapolites and propose the possible
existence of an independent end-member bearing Mg and OH. Three
significant groupings of trace elements were deduced. Mineralogical
analyses often require special treatment (Aitchison, 1986).

Stratigraphy

R-mode factor analysis was used by McElroy and Kaesler (1965) on well
data from the Upper Cambrian Reagan Sandstone on the Central
Kansas Uplift. The four factors extracted were interpreted in terms of
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subsidence during the time of deposition of the sandstone, regional
distributional patterns, and periods of uplift or nonsubsidence.

Biofacies relationships

Cheetham (1971) made R- and Q-mode factor analyses of weight-per-
centage abundances of major biotic constituents in a calcareous mound
in the Danian of southern Scandinavia (transforming to minimize the
constant sum constraint). From the R-mode loadings, three kinds of
influences involving bryozoans and corals could be recognized, as well
as the spatial relationships of biofacies.

Intertidal environment

A question of paleoecological significance concerns the identification of
communities in tidal sediments. Cassie and Michael (1968) tried several
multivariate methods in a well-documented study of this problem and
came to the conclusion that principal component analysis proved to be
the most versatile of them in that it permits both the diagnosis of the
community structure and a plausible contouring of the communities in
space.

Heary minerals

Imbrie and Van Andel (1964) studied occurrences of heavy minerals
from the Gulf of California and the Orinoco~Guyana shelf by R- and
QO-mode factor analysis. The two areas have quite different sedimento-
logical histories. Factor analysis of the simple situation represented by
the Californian material yielded results similar to those obtained by
conventional inspection, although more meaningful detail was revealed.
The more remote petrographical sources of the Orinoco~-Guyana shelf
produce a more complicated situation with much mixing of the miner-
als. The factor analysis yielded a mineral distributional pattern greatly
different from the impression given by mere inspection of the data.
These results could be interpreted convincingly in terms of transporta-
tion during the post-Pleistocene rise of sea level.

Vertebrate paleontology

Gould (1967), analyzing pelycosaurs by R- and Q-mode factor analysis,
was able to demonstrate far-reaching agreement for his computational
results with the accepted scheme of phylogeny. Mahé (1974), in what is
essentially a review of a comprehensive study of Madagascan fossil
lemurs, advocated the pilot application of correspondence analysis to a
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few specimens of a sample in order to identify the most meaningful
variables for a multivariate analysis. Using this variety of factor analysis,
he established the phylogenetic relationships among lemurs, using cran-
iometrical characters, but noted that the approach works best at the
generic level.

Geochemistry of magmas

Teil and Cheminée (1975) analyzed major and trace elements in
Ethiopian lavas by correspondence analysis, whereby meaningful associ-
ations between elements and samples could be shown to exist. The
results turned out to be in agreement with accepted chemically based
considerations for fractionation of magmas.

Palynology

In a study of Flandrian pollen data, Birks (1974) made a principal
component analysis of percentage data on frequencies of pollen types.
The component scores for the individual samples were plotted in
relation to the stratigraphical position of the sample, thus forming
composite “curves” of the original pollen variables. Birks makes here a
highly significant suggestion, namely, that “a pollen zone can be delim-
ited on the basis of stratigraphically adjacent samples with similar
compositional scores.”

Geochemistry of Cambrian alum shale

Armands (1972) studied in detail the geochemistry of uranium, molyb-
denum, and vanadium in Swedish alum shale. In this treatise, principal
components and factor analysis were used to determine the paragenesis
of elements in alum shales. Partly with the help of the results of these
analyses, Armands found that Upper and Middle Cambrian alum shales
can be divided into five categories, notably, detrital, authigenic, carbon-
ate, sulfide, and organic.

Paleoecology

Variations in the relative frequencies of different species in samples
may be interpreted in terms of major environmental factors to which
the organisms react. Reyment (1963) used principal components and
factor analysis to unravel paleoecological relationships between envi-
ronmental forces and 17 species of Paleocene ostracods. The statistical
analysis succeeded in separating euryoic species from stenodic ones (see
Section 8.3). Birks and Gordon (1985) give several examples of multi-
variate paleoecological studies.



